Exploring collective interactions of matter and antimatter

STRIP AWAY ELECTRONS FROM THEIR ATOMS and you get a plasma — a collection of negatively charged electrons and positively charged ions. But at high energies around compact cosmic objects such as black holes, quasars and pulsars, curious plasmas may form that, instead of ions, contain positrons, the antimatter counterparts of electrons.

Scientists are searching for ways of distinguishing this type of plasma from others, both in astrophysical environments and in laboratories on Earth. Julia Mikhailova, an assistant professor of mechanical and aerospace engineering, and Matthew Edwards, a graduate student in her lab, together with Professor of Astrophysical Sciences Nathaniel Fisch, found that, contrary to earlier claims, an electron-positron plasma would scatter some wavelengths of light surprisingly intensely via a process called Brillouin scattering.

This fundamental insight into the unusual behavior of matter-antimatter plasmas, published in the journal Physical Review Letters Jan. 8, 2016, may help to find such plasmas in space, or validate methods for creating them in the lab. The work was funded in part by the National Science Foundation and the National Nuclear Security Administration. –By Bennett McIntosh

The Princeton Plasma Physics Laboratory: The quest for clean energy continues

NSTX-U

After a three-year, $94 million overhaul, the Princeton Plasma Physics Laboratory’s primary fusion reactor has resumed the quest for clean energy. The fusion of parts of the atom inside the reactor could release a near limitless amount of energy and reduce our dependence on fossil fuels, while generating minimal hazardous waste. The upgrade included replacing the center of the apple-shaped reactor with a new 29,000-pound magnetic core. PHOTO BY JAMES CHRZANOWSKI

FUSION — the energy-making process that powers the sun — could provide us with a near limitless source of energy, ending our dependence on fossil fuels for making electricity.

This summer, after a nearly three-year overhaul, the world-leading fusion research facility at the Princeton Plasma Physics Laboratory (PPPL) switched on its newly outfitted flagship reactor, the National Spherical Torus Experiment-Upgrade (NSTX-U). The reactor uses electrical current and heat to create a hot, charged state called a plasma, which is encased by powerful magnets so that parts of the atoms can collide and fuse, releasing massive quantities of energy in the process.

The $94 million upgrade has made the NSTX-U the world’s most powerful spherical tokamak — the name given to donut-shaped fusion reactors — while doubling its heating power and magnetic fields, and making it the first major addition to the U.S. fusion program in the 21st century.

“The upgrade boosts NSTX-U operating conditions closer to those to be found in a commercial fusion power plant,” said Stewart Prager, director of PPPL, which is managed by Princeton University for the U.S. Department of Energy and is located some three miles from the campus. “Experiments will push into new physics regimes and assess how well the spherical design can advance research along the path to magnetic fusion energy.”

Fusion reactor

The upgrade included bringing in a 70-ton machine (above) that produces beams that heat the plasma. PHOTO BY MICHAEL VIOLA

The key feature of the design is its compact, cored apple-like shape, as compared with the bulkier, donut-like form of conventional tokamaks. The compact shape enables spherical tokamaks to confine highly pressurized plasma gas — the hot, charged fuel for fusion reactions — within comparatively low magnetic fields. This capability makes spherical tokamaks a cost-effective alternative to conventional tokamaks, which require stronger and thus more expensive magnetic fields.

Building the NSTX-U posed novel challenges for engineers and technicians throughout PPPL. Tasks ranged from flying a 70-ton neutral beam machine over a 22-foot wall to building a 29,000-pound center stack. These huge components fit alongside and inside an existing facility — the original NSTX — with hair-thin precision, requiring an effort that one engineer likened to rebuilding a ship in a bottle.

Researchers now plan to test whether the NSTX-U can continue to produce high-pressure plasmas under the hotter and more powerful conditions that the upgrade allows. Also on the research agenda are tests of how effectively the NSTX-U can keep temperatures approaching 100 million degrees centigrade from dissipating, and whether its spherical design can be a strong candidate for a major next step in the U.S. fusion program.

–By John Greenwald

Download PDF

A farewell to arms? New technique could aid nuclear disarmament

A Farewell to Arms?

A new method that borrows from strategies used in computer cryptography could verify the presence of nuclear warheads without collecting classified information. The technique fires high-energy neutrons at a non-nuclear target (pictured above), called a British Test Object, that will serve as a proxy for warheads. (Photo by Elle Starkman)

SCIENTISTS at Princeton University and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are developing a system to verify the presence of nuclear warheads without collecting classified information, as a step toward the further reduction of nuclear arms.

While efforts have been made to develop systems for verifying the content of warheads covered by disarmament treaties, no such methods are currently in use. The new method borrows from strategies used in computer cryptography to identify nuclear warheads while learning nothing about the materials and design of the warheads themselves.

The research was published in the June 26, 2014, issue of Nature and was conducted by Alexander Glaser, an assistant professor in Princeton’s Woodrow Wilson School of Public and International Affairs and the Department of Mechanical and Aerospace Engineering; Robert Goldston, former director of PPPL, a fusion researcher and a professor of astrophysical sciences at Princeton; and Boaz Barak, a senior researcher at Microsoft New England who has taught computer science at Princeton.

–By John Greenwald

Star formation, black holes focus of new research

Star formation in a box

Star formation in a box. The figure shows star-forming gas clouds from a large-scale computer simulation. With the new Theoretical and Computational Astrophysics Network, researchers will be able to simulate star formation more precisely than ever. (Image courtesy of Chang-goo Kim)

TWO NEW RESEARCH NETWORKS IN ASTROPHYSICS got off the ground this year, one to explore how stars form and the other to study how black holes accumulate matter, with the goal of answering fundamental questions about the universe.

The Theoretical and Computational Astrophysics Network (TCAN) on star formation will examine questions such as what drives gas clouds to collapse to make new stars, and what determines whether a new star becomes a dwarf or a giant. The network is supported by NASA’s Astrophysics Division and co-led by Eve Ostriker, professor of astrophysical sciences, and James Stone, professor of astrophysical sciences and applied and computational mathematics, and includes the University of California-Berkeley and the University of California-Santa Cruz.

The second TCAN will explore black hole formation, and look at why some black holes consume matter quickly while others do so slowly. The network, funded by National Science Foundation’s Division of Astronomical Sciences, is led by Stone and includes the UC-Berkeley, the University of Illinois and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory through the Max Planck Princeton Center for Plasma Physics.

–By Catherine Zandonella

The Princeton Plasma Physics Laboratory: Blazing a path to fusion energy

Ask researchers at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) to name one of the greatest science and engineering challenges ever undertaken and the answer comes easily: harnessing fusion energy.

Fusion happens naturally in the sun and other stars. The tremendous gravity from these massive stellar objects crushes together the nuclei of hydrogen atoms and releases vast amounts of energy. Bringing this process down to Earth could provide a safe, clean and virtually limitless supply of power for generating electricity.

But harnessing fusion energy is a supremely difficult task. The positively charged nuclei — or ions — inside atoms resist being squeezed together, and there is no solar gravity in laboratories to force the stubborn particles to merge.

Enter PPPL’s National Spherical Torus Experiment (NSTX-U). This device, called a “tokamak,” is in the midst of a $94 million upgrade that will make it the most powerful fusion facility of its kind in the world when the work is completed in 2014. Such facilities heat hydrogen to astronomical temperatures and trap it in magnetic fields to produce the superhot, electrically charged plasma gas that fuels fusion reactions.

Scientists then study the gas to learn how to use it to create a “burning plasma,” or sustained fusion reaction — the goal of global fusion research. “It’s as if we’re trying to create a state of matter on Earth that hasn’t existed before,” said PPPL Director Stewart Prager. “And that’s a hard thing to do.”

PPPL is a leader in this worldwide quest and a key source of public information and classroom instruction about the physics involved. The laboratory, which is managed by Princeton University and is located about three miles from campus, collaborates in major fusion experiments in Europe, Asia and the United States, and conducts educational programs for participants ranging from the general public to graduate students (see box and map).

The NSTX-U upgrade will enhance all capabilities of the machine. The temperature inside the three-story-tall tokamak could rise above 60 million degrees Celsius during experiments and reach six times the temperature at the core of the sun. The electric current that powers the machine’s huge magnets will double, as will the strength of the magnetic fields.

The sharply increased forces will quadruple the stress on all the NSTX-U components that support the magnets. This has required PPPL engineers to redesign and reinforce such structures throughout the machine. “It took a tremendous amount of analysis time to do this,” said engineer Ron Strykowsky, project manager for the upgrade.

Research on the powerful NSTX-U, whose spherical shape resembles a cored apple as compared with the donut-like shape of conventional tokamaks, will be followed by fusion researchers around the world. Experiments will show whether the streamlined, spherical design of the PPPL machine can serve as a model for the next major step in U.S. fusion research, and will produce vital data for ITER, the huge international fusion facility under construction in France.

PPPL has charted a five-year plan of action for the NSTX-U. The spherical device set records for efficient plasma confinement when it operated from 1999 to 2011 prior to the upgrade. Researchers now want to see if the enhanced machine can confine far hotter and harder-to-corral plasmas just as efficiently.

Plans also call for testing a system that will line the inner walls of the tokamak to protect them from the scorching plasma that escapes the magnetic field. Researchers will coat the walls with a thin layer of lithium, a silvery metal that turns liquid when struck by stray particles, to absorb the hot gas. “It works the way sweat moistens and protects the skin,” said Masayuki Ono, project director for the NSTX-U department at PPPL.

The escaping heat poses further challenges. The plasma could easily slice through a metal plate called a “divertor,” which serves as an exhaust system in tokamaks, unless the heat can be spread before it reaches the plate. Researchers will test an awardwinning device called a “snowflake divertor,” which PPPL helped develop and employed prior to the upgrade, to see how well it can spread the NSTX-U heat flux.

Likewise high on the PPPL agenda will be testing new ways to create and sustain the electric current that runs through tokamak plasmas. This current now is generated by a coil called a “solenoid” that will be unable to operate in the continuous fashion that future facilities will require. While the NSTX-U will still use a solenoid, researchers also will inject current through a pair of electrodes installed in the tokamak as a possible replacement for the coil.

Scientists will address all these issues in experiments called “shots” that will heat the plasma and run the NSTX-U magnets for up to five seconds — five times longer than previously possible. Preliminary plans call for some three shots an hour, eight hours a day, for 120 experiments a week.

These shots will determine if a spherically shaped tokamak could be a strong contender for the next key device in the U.S. fusion program. That envisioned device, called a Fusion Nuclear Science Facility (FNSF), would assemble and test all the components needed for a fusion power plant. This would pave the way for a demonstration fusion facility that would generate electricity on the grid and lead in turn to construction of a commercial fusion plant around the middle of the century.

The FNSF “would propel fusion forward fantastically,” said Prager. And the NSTX-U “will give us the physics information so the world can make a yes-or-no judgment about whether the spherical tokamak is a good candidate for that next step.”

Bringing plasma to the people

Plasma is everywhere, from the gas in neon light bulbs to the fuel that lights the stars. PPPL’s mission includes highlighting the properties of this fourth state of matter for the general public and inspiring and educating the next generation of scientists. “We want the public to know what we do and why we do it,” said John DeLooper, head of the best practices and outreach programs at PPPL. “And we want to excite young people to go into the world of science.”

The Princeton Plasma Physics LaboratoryThe laboratory carries out this role through wide-ranging programs. PPPL has a variety of portable scientific demonstrations and experiments that staffers bring to public events and school classrooms. The laboratory also provides a 10-week summer internship in plasma physics for college undergraduates. Seventy-two percent of the physics and engineering students who have taken the course have entered doctoral programs in physics since 2000.

For students who go on with their studies, PPPL supports graduate education chiefly through the University’s Program in Plasma Physics in the Department of Astrophysical Sciences. The program has awarded more than 265 doctorate degrees, many to people who have become leaders in the field.

-By John Greenwald